
Level 2 - Python Projects

1. Rock Paper Scissors with Computer

Create a program that simulates the

popular hand game: Rock, Paper,

Scissors, usually played between two people,

in which each player simultaneously forms one

of three shapes with their hand.

Notes:

• Your Game should be between 1 player and the computer

• The game begins with a user (player) getting to choose a hand form by typing it

in or clicking on an image.

• The computer will immediately output: the users choice, the computer’s choice

and report who won that round.

• The computer’s choice should be selected randomly from a list

• The game should be able to be repeated until the user decides to quit by

entering a particular word or key stroke.

2. Simon Says Game

• Create a game that will display four colored squares on the screen.

• The game will then flash/illuminate a series of colors in a particular
order and ask the user to copy the order.

• The player can either type in the order of colors they saw or click
on the squares in the correct order to indicate the pattern they
saw.

• If the player gets the pattern correct, the computer will flash another
pattern for the user to follow.

• After a few successful attempts by the user the patterns can either
become faster, longer or both.

• The game should proceed so the complexity/speed of the patterns
increases in “levels”.

• The player get more points (or just bragging rights) depending on the level that they can
achieve.

https://en.wikipedia.org/wiki/Hand_game

3. Memory puzzle

• This should be a two player game.

• When the game starts, a series of tiles are displayed face

down on the screen.

• The first player then flips over two tiles, selecting them by

clicking on them.

• If the two tiles have the same image, the cards are

removed and you get a point. If they are not the same a

second player takes a turn.

• The game is finished when all the matches have been made

• The game should keep track of how many matches each player has made and

report the winner to the players

4. Hang man Classic

Create the classic hangman

game where a series of

underlined spaces are

displayed that represent the

unknown letters of a mystery

word.

Notes:

• The user guesses a letter. If that letter is in the mystery word the letter will

appear where it should above the blank underline in the word. If the guessed

letter does not appear in the mystery word, a portion of the hang man drawn and

the incorrect letter is reported at the side of the game.

• This continues until the player has all the letters in the word or they have made

the maximum amount of guess necessary to end the game in defeat.

5. Tick Tack Toe

Two players: (X and O), take turns marking

the spaces in a 3×3 grid. The player who

succeeds in placing three of their marks in a

horizontal, vertical, or diagonal row is the

winner. This should be a two player game.

6. Speed Typing Game

A paragraph appears on the screen. The user has to

retype the paragraph as quickly as possible without

making a mistake. You may choose to award points one

of two ways: based on the time it takes to type the

paragraph or if you are able to complete the paragraph in

a predetermined span of time.

The game should include multiple chances (or levels) for

the user. Hint: you will have to import the time library for this game.

7. Video game

Review the mini video game shown to you in the

Leve1 – Python Turtle assignment.

Using that lesson and other resources you can find, try to

create any video game you wish.

8. Black Jack

Black Jack is one of the simplest casino card games and a great

project for computer programming students. Look up how the

game is played (play a few rounds yourself online if you wish).

Then use the model below to create a black jack game that your

friends can play.

1. Create a deck of 52 cards

2. Shuffle the deck

3. Deal two cards to the Dealer and two cards to the Player

4. Show only one of the Dealer’s cards, the other remains hidden

5. Show both of the Player’s cards

6. Ask the Player if they wish to Hit, and take another card

7. If the Player’s hand do not go over 21, ask if they’d like to Hit again.

8. If a Player Stands, play the Dealer’s hand. The dealer will always Hit until the Dealer’s

value meets or exceeds 17

9. Ask the Player if they’d like to play again.

9. Binary to Decimal and vice versa

Computers operate by manipulating on and off

electrical signals. A number system called binary

is used to encode the on and off (0 and 1’s) into

data that we can store and use.

Look up how the Binary System works using the

links on the course page and learn how to

convert Binary to Decimal and the reverse.

Create a program in python that can convert binary numbers to decimal numbers (and

the reverse).

10. Pong

Create the classic game pong! Not

familiar with this arcade classic? Check

out: https://pong-2.com/

Lots of options here. You can try:

• 1 or 2 player versions.

• A version that has different levels with different ball speeds.

• A version that makes ball’s direction (as bouncing off the paddle) depend on the

direction the paddle is going.

11. Lunar Lander

Create the classic game Lunar lander!

Not familiar with this arcade classic?

Find your own version online or checkout:

https://scratch.mit.edu/projects/72798680/

Lots of option here. Best to play a few

online versions so you can see all the cool

stuff you can add.

12. Intersection Point

Write a program that will allow the use to input the

equations of two straight lines:

Line 1: y=ax+b

Line 2: y=cx+d

First the user will choose the slope and y intercepts of

each line (a,b,c,d) above.

Then the program will then calculate the coordinates of the intersection point of the tow

lines (if such a point exists)!

https://pong-2.com/

13. Projectile Motion Simulator

Create a projectile motion

simulator (without referring

to a python tutorial).

Your simulator should let the

user select an initial speed

and angle and then show an

accurate path and motion

the projectile will take given

those inputs.

Example simulator:

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_en.html

You can make your simulator into a game or make any additions you wish as long as

the motion the projectile is accurately modeled by the correct physics.

If you have not taken Physics 11 or are not familiar with the physics of projectile motion,

then talk to Mr. Walzl. Or you can try to get an idea for the physics using any online

resources you wish (some OK ones below):

https://www.youtube.com/watch?v=aY8z2qO44WA

https://www.physicsclassroom.com/class/vectors/Lesson-2/Horizontal-and-Vertical-

Components-of-Velocity

14. Squirrel Eat Squirrel

Create the following game. The player controls a small squirrel

that must hop around the screen eating smaller squirrels and

avoiding larger squirrels. Each time the player’s squirrel eats a

squirrel that is smaller than it, it grows larger. If the player’s

squirrel gets hit by a larger squirrel larger than it, it loses a life

point. The player wins when the squirrel becomes a monstrously

large squirrel called the Omega Squirrel. The player loses if their

squirrel gets hit three times.

https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_en.html
https://www.youtube.com/watch?v=aY8z2qO44WA
https://www.physicsclassroom.com/class/vectors/Lesson-2/Horizontal-and-Vertical-Components-of-Velocity
https://www.physicsclassroom.com/class/vectors/Lesson-2/Horizontal-and-Vertical-Components-of-Velocity

15. Decoding a Message (find the Walzl-dollars):

Mr. Walzl has decided to hide a stack of Walzl-dollars at an unknown location.

He has left a sequence of coded instructions for his assistant so that the assistant can

retrieve them. Each instruction is a sequence of five digits which represents a direction

to turn and the number of steps to take:

The first two digits represent the direction to turn:

• If their sum is odd, then the direction to turn is left.

• If their sum is even and not zero, then the direction to turn is right.

• If their sum is zero, then the direction to turn is the same as the previous instruction.

The remaining three digits represent the number of steps to take which will always be

at least 100. Your job is to create a program for the assistant so they can decode the

instructions and always find the secret formula.

Input Specification

There will be at least two lines of input. Each line (except the last line) will contain exactly

five digits representing an instruction. The first line cannot begin with 00. The last line

will contain 99999 and no other line will contain 99999.

Output Specification

There must be one line of output for each line of input except the last line of input. These

output lines correspond to the input lines (in order). Each output line gives the decoding of the

corresponding instruction: either right or left, followed by a single space, followed by the

number of steps to be taken in that direction.

Sample Input

57234

00907

34100

99999

Output for Sample Input

right 234

right 907

left 100

