

Algorithms and Flowcharts

Algorithms play a vital role in Computer Science. Leaders in the field always remind

students that “Coding is simply translation… The hard work, creativity, and solutions are in

the algorithm”.

An algorithm is a precise description (usually a diagram) that outlines the specific process

necessary to solve a problem.

Algorithms are of more than just a list.

They usually show:

A. Sequence of items needed to be done

B. Decisions that need to be made and that lead to different path

C. Repetition of tasks

Aside from very simple solutions, the only way to correctly create an Algorithm for a

computer program is by using flowchart. These flowcharts play a vital role in the

communication of solutions to complicated problems

Once the flowchart is drawn, examined and tested, it becomes easy to write the program in

any high level language. Flowchart algorithms are an essential step for all computer

programmers.

Standard Algorithm Flow Chart Symbols

Start or end of the program

Doing stuff (running motors, displaying stuff, calculating

Input or output operation

Decision making and branching

Connector or joining of two parts of program

We will only use the ones in bold.

Some Guidelines for Flowchart Algorithms:

1. Must be in a logical order. Linear flow.

2. The flowchart should be clear, neat and easy to follow. There should not be any room for

ambiguity in understanding the flowchart.

3. The usual direction of the flow of a procedure or system is from left to right or top to

bottom.

4. Only one flow line should come out from a process symbol.

 or

5. A decision symbol should have more than one line coming out of it

6. Avoid the intersection (crossing) of flow lines.

7. Ensure that the flowchart has a start and finish. (not in the case of WHILE (true))

8. Test the logic of your flowchart by passing through it with a buddy.

EXAMPLES:

Example

An algorithm

for finding the average

of two numbers

START

Input x

Input y

Sum = x + y

Average = sum/2

Output

Average

END

Repeating (Looping) Stuff

Example 2

WHILE LOOP

(Repetition)

The flow-lines show that if

a specific condition is true,

the program with do some

stuff and then “loop back”

to test the condition again.

The program will be stuck

in a repetitive loop until the

condition is false

If the condition is false then

The program drops out of

the loop and on to the next

line of code.

Example 3

(Decision)

NESTED WHILE LOOP

This is one loop that is

contained within another

loop.

This can be used when you

want repeat some code, but

only if TWO or more

conditions are met.

Look carefully at the

example diagram.

Tricky…

Decision making (This or That)

Example 4

(Decision)

If-else STATEMENT

Notice no commands are

repeated here.

No looping!

A separate branch in the

flow chart is created

No repetition is done

during an if statement.

Example 1

task main()

{ wait1Msec (3000);

 while(true)

 {

 if (SensorValue[Light]>30)

 {

 wait1Msec(500);

 PlaySoundFile("Woops.rso");

}

 if (SensorValue[Sonar]<6)

 {

 PlayTone(300, 15);

 wait1Msec (2000);

 }

 }

}

Example 2

task main()

{

 wait1Msec(3000);

 while (true)

 {

 while (SensorValue[button]==1)

 {

 motor[motorA]=-80;

 motor[motorC]= 80;

 }

 while (SensorRaw[SonarValue2]>46)

 {

 motor[motorA]=0;

 motor[motorC]=0;

 }

 }

}

Now you try:

Problem #1. Draw a correct algorithm for the code below:

task main()

{

 wait1Msec(3000);

 while(true)

 {

 eraseDisplay();

wait1Msec(900);

nxtDisplayCenteredBigTextLine(2,"Search for Black”);

nxtDisplayCenteredBigTextLine(3,"%d",SensorValue[S1]);

 wait1Msec(900);

 if (SensorValue[S1]>25)

 {

 eraseDisplay();

 playTone(100, 10);

 }

 }

}

Problem #1. Draw a correct algorithm for the code below:

task main()

{

wait1Msec(2000);

while (true)

{

while(SensorValue[Button1]==1)

{

eraseDisplay();

nxtDisplayString(3, “INTRUDER”);

wait1Msec(2000);

}

while(SensorValue[Button1]==0)

{

eraseDisplay();

nxtDisplayString(3,”ALL CLEAR - NO INTRUDER”);

wait1Msec(100);

}

}

}

