Electrostatic Potential Energy and Electric Potential

Problems Set 2020

1.

A 0.16 C charge is moved in an electric field from a point with a potential of 25 V to another point with a potential of 95 V. How much work was done to move this charge?

- A. 4.0 J
- B. 11 J
- C. 15 J
- D. 19 J

2.

A moving proton has 6.4×10^{-16} J of kinetic energy. The proton is accelerated by a potential difference of $5\,000$ V between parallel plates.

The proton emerges from the parallel plates with what speed?

- A. 8.8×10^5 m/s
- B. $9.8 \times 10^5 \text{ m/s}$
- C. 1.3×10^6 m/s
- D. 1.8×10^6 m/s

What is the electric potential at point P due to the two fixed charges as shown?

- A. 1200 V
- B. 1500 V
- C. 5 200 V
- D. 7 100 V

4.

A charge q of 30.0 μ C is moved from point X to point Y.

How much work is done on the 30.0 μ C charge? $\left(1 \mu C = 1 \times 10^{-6} \text{ C}\right)$ (7 marks)

a) Find the electric potential at point A and at point B. (Note: $1.0\,\mu\text{C}$ is $1.0\times10^{-6}\,\text{C}$) (3 marks)

6. A proton, initially at rest at point X, will have what speed at point Y? (7 marks)

Charge Q_1 is located 5.0 m from charge Q_2 as shown.

$$Q_1 = 2.0 \times 10^{-6} \text{ C}$$

$$Q_2 = 5.0 \times 10^{-6} \text{ C}$$

$$2.0 \text{ m}$$

$$5.0 \text{ m}$$

$$3.0 \text{ m}$$

How much work must be done to move charge Q_1 2.0 m closer to charge Q_2 ?

- A. $7.2 \times 10^{-3} \text{ J}$
- B. $1.1 \times 10^{-2} \text{ J}$
- C. $1.2 \times 10^{-2} \text{ J}$
- D. $2.0 \times 10^{-2} \text{ J}$

8.

A proton initially at rest is accelerated between parallel plates through a potential difference of 700 V.

What is the maximum speed reached by the proton?

- A. 8.6×10^4 m/s
- B. 3.1×10^5 m/s
- C. 3.7×10^5 m/s
- D. 1.6×10^6 m/s

Two point charges Q_1 and Q_2 are arranged as shown in the diagram below.

The electric potential at point P due to these charges is found to be 1.9×10^5 V. What are the magnitude and sign of charge Q_1 ? (7 marks)

10.

A proton initially held at rest 2.0 m away from a fixed 25 μC charge is released. The proton accelerates to the right as shown.

What is the speed of the proton when it is 6.0 m away from the 25 μ C charge?

- A. 2.7×10^6 m/s
- B. 3.3×10^6 m/s
- C. $3.8 \times 10^6 \text{ m/s}$
- D. 4.6×10^6 m/s

What are the magnitudes of the electric field and the electric potential at point P midway between the two fixed charges?

	MAGNITUDE OF ELECTRIC FIELD	ELECTRIC POTENTIAL
A.	0 N/C	0 V
B.	0 N/C	30 000 V
C.	10 000 N/C	0 V
D.	10 000 N/C	30 000 V

Answers:

- 1. B
- 2. C
- 3. D
- 4. 3.94 J
- 5. -18000 V or +18000V
- 6. $2.0 \times 10^6 \text{ m/s}$
- 7. C
- 8. C
- 9. 7.67 x 10⁻⁶ C
- 10. C
- 11. C