
F string Formatting

Want a better way to insert a variable into an output string?

The traditional way in Python 3 is done like this:

x="Mr. Walzl"

print('the person named',x,'is the best!')

but with f-string formatting with can get rid of the commas:

x= "Mr. Walzl"

print(f'the person named {x} is awesome')

f-string formatting isn’t much different, but it is far more

frequently used by experienced python programmers. Please

notice the f after the print statement (it’s an essential part of

the syntax). You will notice later that f-string formatting is easier

to read and write than multiple comma pairs.

Here are some more examples of how f-string formatting is done. For the first exercise

run the following code in Replit to see what it does. Notice that we can get rid of

several (confusing) comma pairs each time we use f-string formatting:

Exercise#1

Read the following does, predict what it will do, and then run in Replit to see what it

does. Save your work as example#1

x='Laura'
y=25
z='smartest in the class.'
print(f'Out of {y} students {x} is {z}')

a=int(input('give me a number:'))
b=int(input('give me another number:'))
here we an even evaluate an expression using f-string formatting
print(f'the sum of the two numbers you gave me is {a+b}')

Exercise#1 (continued)…read the following code, predict what you think it will do,

then run the code in Replit and save as part of exercise#1

list1=['red','green','blue']

print(f'The first item in list1 is: {list1[0]}. List1 has

{len(list1)} items in it.')

f-string Formatting

Decimal numbers

Exercise#2

Now let’s use f-string formatting to

format decimal numbers (floats).

Try the following code in Replit

Save them as Exercise #2:

number = float(input("Enter a decimal number with 4 decimal places: "))

print (f'{number}')

print (f'{number:.3f}')

print (f'{number:.2f}')

print (f'{number:.1f}')

f-string formatting also allows us to format tables with clear columns. Try the

following code in Replit put it in Exercise#2:

header = ["Item","Price:"]

item1 = ["Apples","$1.00"]

item2 = ["Bananas","$0.75"]

item3 = ["Cherries","$2.50"]

print(f"{header[0] : <20}{header[1] : <20}")

print(f"{item1[0] : <20}{item1[1] : <20}")

print(f"{item2[0] : <20}{item2[1] : <20}")

print(f"{item3[0] : <20}{item3[1] : <20}")

f-string formatting tables with clear columns.

Notice in the previous example that important part is the specifier: <20

This means: Create a column that is 20 spaces and then push text to the left < edge of the

column.

print(f"{header[0] : <20}{header[1] : <20}")
print(f"{item1[0] : <20}{item1[1] : <20}")
print(f"{item2[0] : <20}{item2[1] : <20}")
print(f"{item3[0] : <20}{item3[1] : <20}")

Placing different symbols after a colon : in the { formatting } brackets allows you to tailor

your formatting with a number of different options. Above we used the <20 symbol to

create a column with 20 spaces and pushed the test to the left.

Please watch the video on the course page titled: f-string format specifiers.

Try the following and see what the > does. Include it in Exercise#2

s1 = 'Whistler Secondary School'
s2 = 'Where a helmet'
s3 = 'Enjoy'
s4 = 'WSS'

print(f'{s1 : >25}')
print(f'{s2 : >25}')
print(f'{s3 : >25}')
print(f'{s4 : >25}')

Watch the following video and then Try the following Exercises#3

https://www.youtube.com/watch?v=BbGGfTP1GZQ

Exercise#3

Write a Python program that prompts the user to enter two decimal numbers and then

operation (+, -, *, or /) Then, uses f-string formatting to evaluate and display the result of the

expression neatly to the user.

Here's the expected flow of the program:

a) Ask the user to input the first number (a float).

b) Ask the user to input the second number (a float).

c) Ask the user to input an operator (+, -, *, or /).

d) Display both numbers, the operation, and the result in a neatly formatted print

statement like the following example

 23.456
+ 9.340

 32.796

Helpful Hints:

• Use f-string formatting to calculate and display the result of the expression.

• You can use the float() function to convert user input to floating-point numbers.

• Use an if statement to check the operator entered by the user and perform the corresponding

operation.

https://www.youtube.com/watch?v=BbGGfTP1GZQ

Exercise#4

The objective of this exercise is to practice using f-string formatting in Python to create

and display a simple table from two lists provided by the user.

Write a Python program that creates a simple table of student names and their

respective scores. The program should use f-string formatting to display the table

neatly.

Here's the expected flow of the program:

a) Allow the user to create a list of student names (e.g., ["Alice", "Bob", "Charlie", "David"]).

b) Allow the user to create a corresponding list of scores for each student (e.g., [95, 87, 72, 88]).

c) Use a for loop and/or zip() function (as shown below) to iterate through the lists then print

student names and scores.

d) Use f-string formatting to display a table with two columns: one for the student names and

one for their scores.

e) Format each row of the table using f-string formatting to align the columns neatly.

The following code may help you display the student with the correct corresponding score

Your job is to see if you can use f-string formatting to place the output into a neat table. You

can also insert the headings (Name: and Score:) if you wish.

num = [1, 2, 3]
color = ['red', 'while', 'black']
iterates over 2 lists and executes
for (a, b) in zip(num, color):
 print (a, b)

for more on the zip() function check out:

https://blog.enterprisedna.co/python-zip-function-ultimate-guide-with-code-examples/

Sample intended output for Exercise#4:

Name: Score:

Jeff 90
Carol 50
Tim 20
Denise 88

https://blog.enterprisedna.co/python-zip-function-ultimate-guide-with-code-examples/

