
Intro to 2-Dimensional Lists in Python

As you may have noticed, the world we live in is

complicated and difficult to represent with single a

straight line. We live in a 3-Dimensional world and most

of the things we model in mathematics and science have

more than a single dimension.

In most programming languages you can create multi-

dimensional data structures to help up represent anything 2D, 3D,

or even more dimensions. These structures are necessary to:

• Model 2-dimentioanal and 3 dimensional space

• Create data tables.

• Perform various mathematical operations (matrices)

• And much much more…

2-Dimensional Lists:

Look at the images to the right. 2D lists are simply

a 2-Dimensional grid of data. Storing data this way

can make accessing data easier and allows us to

model real 2-D data in a more accurate way.

Weather we are working with a table of

information or a 2-D game board. Using a 2D

lists is an easy tool to help us out.

In Python a 2D list is… “a list of lists”:

2dlist = [[1, 2], [3, 4],[5, 6]]

As you can see above we have a list of 3 sub-lists:

• Each sub-list in the list represents a new row

• Each element in the each sub-list represents a new column

1 2
3 4
5 6

Exercise#1

Enter the following into the IDE of your choice. Look carefully at the output and make

sure you understand the address system for 2-dimensional lists in Python.

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 2D list is… “a list of lists”:

print a

print(a[0])
print(a[1])
print(a[2])
print(a[0][0])
print(a[0][2])
print(a[2][0])

a[0][0]=14
a[1][2]=27
print a

Create your own 4x4 2D list of any integers you wish and print the following using the

2D list address system illustrated above:

1. first element in the first column of the 2D list

2. the element in the 3rd row and 3rd column.

3. the element in the 4th row and 2nd column.

Now change the following elements in your 4x4 list and print the entire 2D list at the

end to see if you were able to make the changes correctly:

1. Change the element in the first row of the 1st column to 23

2. Change the element in the 2nd row of the 3rd column to 47

3. Change the element in the 4th row of the 4th column to 100

Save all your work from entire page above and submit as Exercise#1

Displaying 2D lists

It is often useful/necessary to display 2-D lists in a form that is easily readable by

humans. Use the example code below to build a student timetable and then display it

neatly so it can be used by students.

Exercise#2

Enter the code below to create and display a student timetable.

#My weekly timetable

timetable = []

#Monday

timetable.append(["History","Maths","CompSci","PE","Music"])

#Tuesday

timetable.append(["English","Spanish","Maths","Geography","Art"])

#Wednesday

timetable.append(["PE","English","Science","Art","PE"])

#Thursday

timetable.append(["Maths","English","Philosohpy","Spanish","Music"])

#Friday

timetable.append(["Science","Drama","History","Geography","Science"])

for x in timetable:
 print (x)

for row in timetable:
 for val in row:
 print (f'{val:12}',end='')
 print ("")

KNOW this great way to display 2D lists!

Exercise#2...continued.

Now add to the program on the previous page so it can do the following:

1. Asks the user to input a day of the week (e.g. Tuesday)

2. Asks the user to input a period during the school day (between 1 and 5)

3. Retrieve and output the class on the day and period the user selected (e.g. Spanish)

Adding/Removing entire Rows or Columns to your 2D lists:

One thing you might want to do with a 2-Dimensional set of data is add an entire column or row.

For example let’s say you wanted to create a weekly meal plan like the one shown above

As you can see, it’s not complete. Maybe you would like to add “dinners” to the meal plan or

add the rest of the days of the week. This is relatively easy to do in Python.

Exercise#3

Adding Rows:

Enter the following code into an IDE to see how to add a row. Then add a least one more

additional row to the 4 rows that have been created.

list=[['coffee','salmon','steak'],
['cereal','sandwich','soup'],
['eggs','sandwich','pasta']]

for x in list:
 print (x)
print('\n')

list.append(['waffles','soup','hambuger'])

 for x in list:
 print (x)
print('\n')

Adding rows is simple. Just
append an extra list to the
list.

Exercise#3 continued:

What if we want to insert a row somewhere else besides the bottom row?

We can use the insert() function.

Add the following to the code on the previous page and run the program to see what it

does. Try changing the 1 to a 2, and run the code again. What do the numbers mean?

Now, insert another row (at the very top the chart)

print('\n')

list.insert(1,['toast','chili','chicken'])

for x in list:
 print (x)

print('\n')

Exercise#4

Adding Columns.

Adding, again, to the code from the previous exercise, try to add an additional column

to your meal plan called midnight_snacks:

print('\n')

midnight_snack=['ice cream','cereal','ham sandwich','donut','Glass_o_Milk']

y=0
for x in range(len(list)):
 list[x].append(midnight_snack[y])
 y=y+1
 if y>(len(midnight_snack)):
 break

print('\n')

for x in list:
 print (x)

Building 2D list with For Loops

Let’s say you want to create a 2D game

that involved a 7X7game board. Initially

you wish each space on the board to be

EMPTY. This means you will have to create

a 7X7 2D list of “Empty” Values.

Instead of typing out the entire 2-D list you

could do the following:

Enter the following code into your IDE, run it and make sure you understand how they

both work.

r = 7
c = 7
a = ["Empty"] * r
for i in range(r):
 a[i] = ["Empty"] * c

for row in a:
 for val in row:
 print (f'{val:9}',end='')
 print ("")

#alternatively you could do:
rows=7
cols=7
two_d_list=[]
for i in range(rows):
 row = []
 for j in range(cols):
 row.append(0)
 two_d_list.append(row)

for x in two_d_list:
 print (x)

Solution to creating a 10 x 10 grid where each positions alternates between 0 and 1.

rows = 10
cols = 10

two_d_list=[]
for i in range(rows):
 row = []
 for j in range(cols):
 if j%2==0:
 row.append(0)
 else:
 row.append(1)
 two_d_list.append(row)

for x in two_d_list:
 print x

Exercise#5…continued.

Create a 16 x 16 grid where the first element is the word “good” and the second

elements is the word “bad”….alternate these elements in the array.

When you want to represent 2D data that is regular or repeating you can usually use a for loop like the ones

shown on the previous page.

Exercise#5

Use the code on the previous page to:

• Create a 11x11 grid where all elements are the word “matrix”. Then:

• Create a 15 x 15 grid where all elements are the integer 0.

• Create a 9 x 9 grid of the word “grass”

• Create a 10 x 10 grid where each positions alternates between 0 and 1. (solution below if you are having

difficulty)

Exercise#6

Create a 20 x 20 grid where the first row is all 1’s, the second row is all 2’s, the third row

is all 3’s….continue this pattern for all 20 rows.

Exercise#7

Create a 6 x 4 grid where the first element is 1 and the

second is 2 and each element increase until they reach 24.

User Created Input for a 2D array.

Enter the following the examples into an IDE of your choice and make sure

you know how they work. Save and submit the examples as Exercise#10.

Then work on the exercises after the examples (exercises closely related to

the examples).

Exercise#8

Examples:

Example#1 User Inputs each line of input as a row. User enters entire row on a single line with
each element separated by a space. They hit enter to go on to the next row.

n = int(input())
a = []
for i in range(n):
 row = input().split()
 for i in range(len(row)):
 row[i] = int(row[i])
 a.append(row)

for x in a:
 print x

1 2 3 4 5 6

8 7 9

Example#2 User inputs every element on a separate line. User enters each element then pressed enter.

grid = []
taking 3x3 matrix from the user
for i in range(3):
 row = []
 for j in range(3):
 element = int(input())
 row.append(element)
 grid.append(row)

for x in grid:
 print x

Exercise#9

Create a program that will allow the user to input a list of grades for a group of

students. The first column of each row will be the student’s name the next 5 elements

in each row will be the student’s grades separated by a space. Print out the user’s input

in a neat format.

Exercise#10

Create a program that allows a student to enter a list of temperature data by just

entering the temp for that day and pressing enter. The program should be such that

every 8th input will be put into a new row of data (7 days within a week). After the data is

entered, print out the data an organised table.

Exercise#11

Create a 2D game text game (using a 2D list) that has the following features:

• A 10 x 10 game board (initially all X’s)

• A single player ‘O’ that can move forward left right back with keystrokes (ex. arrow keys)

• 5 gold coins “G” who’s position of the grid are randomly generated at the start of each

game.

• The player’s goal is to move and collect all the coins as fast as they can.

• The game should be timed.

• The game ends when the player has gotten all 5 coins.

• The game should show the player’s time after each game.

• The game should have clear instructions at the beginning on how to move and how to

play.

3D and Other Multi-dimensional Lists.

Just like 2D lists, a 3D list is just a list of lists. But in this case we

will have sub lists within our sub lists:

Exercise#12

Try the following code in Replit. See if you can predict the

printed output.

Then add print statements that will print out the 3,6,8,8,12.

three_d_list=[[[2, 0, 0], [3, 0, 0], [4, 0, 0]],
 [[0, 4, 0], [0, 6, 0], [0, 8, 0]],
 [[0, 0, 8], [0, 0, 8], [0, 0, 12]]]

print(three_d_list[0][1])
print(three_d_list[0][1][2])

Exercise#13

Creating a 3D lists with nested for loops:

Look carefully at the nested for loops below and the comments to see how you can create a 3D

list using for loops. See if you can predict what the print statement will produce. Enter the code

in to Replit to see what it does.

list3d=[] # create a list

for i in range(3):
 list3d.append([]) # add 3 empty lists within that list

 for j in range(3):
 list3d[i].append([]) # add 3 more list with each of the previous

 for k in range(3):
 list3d[i][j].append(0) # put a 0 in for each element in the 3D list

print(list3d) # print out the 3D list

for x in list3d: # print out the list as 3 (3x3) 2D lists
 print (x)

Exercise#14

Creating a 3D lists with list comprehensions:

Look carefully at the list comprehension below to see how you can create a 3D list using list

comprehensions. See if you can predict what all three print statements will produce. Enter the

code in to Replit to see what it does.

lst = [[['3D' for x in range(3)] for y in range(3)] for z in range(3)]

print(lst)

for i in lst:
 print (i)

for x in lst:
 for y in x:
 for z in y:
 print (z)

Exercise#15

Use a 3-dimensional list to create a virtual “house”. The house will be a

3x3x3 list where each element is a different string that represent rooms.

For example: “Entrance”, “kitchen”, “Dining Room”, “Washroom”.

Create a program that will allow a user to go forward, back, left, right,

up, and down to explore the different rooms of the house using

different keystrokes. Assume that every room has access to all the

rooms adjacent to it and above and below it (no stairs needed). Have

fun!

Exercise#16

Imagine you are the owner of a 4x4x4 multistory parking garage

(each floor has 16 spaces arranged in a 4x4 square area). Use

a 3-dimensional list to create a model of your garage where an

empty space is represented by the number zero and an

occupied space is occupied by the number one.

Create a program that will allow the user (parking garage

attendant) to:

a) repeatedly enter coordinates of spots where cars have

come in and have occupied.

b) Your program should give an alert to the user when a

floor has filled up.

c) Your program should allow the user to print out a

neat diagram of the 3D list to show what spot are

currently occupied.

Example:

Car has entered. What floor has it gone to 1-4? 2
What spot has occupied (1-4 forward, 1-4 right)? 2 3
#the spot that is 2 forward 2 to the right
Thank you!

Car has entered. What floor has it gone to 1-4? 1
What spot has occupied (1-4 forward, 1-4 right)? 4 3
#the spot that is 4 forward 4 to the right
Thank you!

