
Creating Functions in Python

What are functions?

Functions are little self-contained programs that perform a specific task that you can

use repeatedly. As we’ve seen, python comes with many pre-made functions: max()

abs() sqr(), but you can also make your own functions.

Example (enter both blocks of code below to see how a function works):

def happyBirthday(person):

 print("Happy Birthday to you!")

 print("Happy Birthday to you!")

 print("Happy Birthday, dear " + person + ".")

 print("Happy Birthday to you!")

We could then “call” the function above in a program above using any person’s name we

wanted:

happyBirthday('Emily')

happyBirthday('Jeff')

happyBirthday('Lira')

Why should we use functions (or make our own)?

You have probably noticed that you can create quite

complex programs without dividing them up into functions,

but there are several reasons why you should become

familiar with how to create functions and how they work:

1. Using functions is the standard way in which code is written in most coding languages.

Even if functions aren’t always necessary, much of code you will see in lessons and

examples on the internet will be written using functions. Most people make a habit of

writing code using functions, so you must become familiar with them.

2. Reusability. Once a function is defined, it can be used over and over and over

again. You can save functions or grab them from other programs and use them in new

projects.

3. Great way to divide up the work. Complex programming projects involve lots people

and many objectives. Using functions allows problems to be broken up into smaller

specific tasks.

More examples of functions:

Let’s say you write a program that is designed to find out if a number is odd or even:

x=int(input(“give me a number”))

if x%2 == 0:
 print("even")
 else:
 print("odd")

Perfect. If we want to reuse this code again and again we could create a function

def evenOdd(x):
 if x%2 == 0:
 print("even")
 else:
 print("odd")

Once a function is defined, we can “call” the function in any time in our program and

use if over and over again without repeating the original code:

evenOdd(2)
evenOdd(3)

evenOdd(9)
evenOdd(8)
evenOdd(14)
evenOdd(23)

Exerciese#1

Type the function above into Trinket and then call the function with any number you

wish name as the function’s parameter.

NOTE: parameters are values that can put into a function.

In the example above (the number) is the required parameter.

Anatomy of a function in python

As you can see from the example above:

def - is the keyword that tells python you are creating a function.

name – the name of a function you use to call the function.

Parameter – information you need to give to the function.

Return statement – code that outputs or returns the desired value.

Exercise #2

Type in the following snippets of code to Trinket. Use the functions to determine the

max value of numbers that you choose. Use the function, repeatedly, by calling the

functions with different parameters.

Function to find max of 2 numbers:

def max_of_two(x, y):
 if x > y:
 return x
 return y

print(max_of_two(3,7))
print(max_of_two(2,10))
print(max_of_two(11,7))
print(max_of_two(3,7))

Exercise 3

Type in the following snippets of code below to Trinket. “Call” the functions with

appropriate parameters to see them work.

def absolute_value(num):

 if num >= 0:

 return num

 else:

 return –num

Note: there is actually a built in function in python that calculates absolute value…do

you remember the built in function abs()?

Dice throw:

import random

def roll_dice(sides):
 number = random.randint(1,sides)

 return(number)

sides = int(input("How many sides does the dice have?"))
throw = roll_dice(sides)

print(throw)

Exercise#4 Your turn….

a) Create a function that converts inches to centimeters.

b) Create a function that can convert Miles/hour into Km/hour.

c) Create a function that can take someone’s birthday and outputs how old they

are.

d) Create a function that you can use to return and print the cube root of a

number.

Exercise#5

Create a series of functions that make drawing basic shapes in python turtle easier.

Create at least 3 and get you classmates to do three different ones. Share your

functions with each other and use the functions to draw some cool stuff.

Show Mr. Walzl when you are done.

Example:

Making a solid circular (disk)

import turtle as t

def draw_disk (col,size, x, y):

 t.penup()

 t.goto(x,y)

 t.pendown()

 t.color(col)

 t.begin_fill()

 t.circle(size)

 t.end_fill()

draw_disk('red',25,20,20)

Exercise #6
Write a function called calculator(operation, num1, num2).

When calculator() is called with an operation (add, subtract, divide, multiply) and two

numbers, it will print out the answer needed.

calculator(multiply,8 ,2).
16

Exercise #7

Create a function that asks the user for a number and then appends that number to a

list. Once you have built your function put it in a while loop that repeatedly calls

function. Your loop should end when the person types 0 as an input value and then

print out the list

No parameter will be necessary for your function. def ask_num ():

Exercise #7

Imagine you are tasked with creating

a program to simulate the duties of a

robotic car sales person. The robot

has various functions and features

that need to be implemented. Your

goal is to create a Python program

that incorporates user-defined

functions for different aspects of the

robot. Your program should have

the following functions:

1. A function called greet_customer that takes the customer's name as input and

prints a personalized message welcoming them to the auto dealership.

2. A function called car_preference that asks the customer what kind of car they are

looking for and then has a series of replies based on their answer.

3. A function called budget that asks the customer their budget and then can list

cars that fit are under the number of dollars they are willing to spend.

Create a program that can call and repeat the above functions in any order or sequence

that you think makes most sense for a believable simulated dialog.

Exercise#8 School Grades

Create a program that helps students in grade 12 get ready for graduation. First create

several predefined lists of grades:

Kevin = [76, 88,90,91,89]
Julie = [70, 98,71,81,77]
Carrol = [60, 72,95,64,57]

Then create 3 user-defined functions that do the following:

1. The calculate_average function calculates the average score for each student.

2. The calculate_grade function assigns a letter grade based on the average score.

3. The Scolarship function that determines if their average is above a certain grade

to get a scholarship.

Each function should have a list as an input

Create a program that incorporates the user-defined lists above that guides them

through selecting the functions above.

Example:

Hi! Welcome to Graduation Ready WSS App! Enter your name: kevin.

Hi “Kevin” how can I help you today?
press 1 calculate your average.
press 2 to find out your letter grade average.
press 3 to find out if you qualify for a scholarship.

Important Note:

It may not seem obvious or terribly useful to user function at this stage in programming.

But using user-defined functions, you can break up code, making it more readable,

reusable, and easier to maintain. Creating functions that have specific responsibilities,

help create a clean and organized structure for the program. This approach is especially

valuable when dealing with more complex programs or when multiple aspects of the

program need to be reused or modified independently.

Functions…you gotta know em!

