
Sorting Algorithms

This is a topic found in almost all
introductory computer programming
courses. Through this section you will
learn common algorithms used to sort
numerical data.

“Sorting” is really just: arranging the
data in ascending or descending order; however, this can be done in many different ways.
Each way can be applied in different situations so that you can minimize:

a) the time taken to sort the given data.
b) Memory Space required to do so.

In today’s world, developing a sorting algorithm from scratch could be replaced by cutting
and pasting from other code or by using a simple one line function such as sort()…So
why is this usually a required section of introductory computer programming courses?

It’s critical to look under the hood and understand how stuff works. Learning sorting
algorithms exposes you to important ideas and techniques essential to becoming a better
problem solver in programming.

Integrating, modifying, or referencing sorting algorithms is very common in computer
programming.

Here are the names of common sorting algorithms.

Bubble Sort

Insertion Sort
Selection Sort
Quick Sort
Merge Sort
Heap Sort

Bubble Sort

Probably the easiest sorting algorithm. Given a list of data a bubble sort is done by:

1. compares the first two numbers (which one is bigger)
2. swaps them if they need to be
3. compares the next pair of numbers
4. this is repeated until no swaps need to take place

This algorithm is called a Bubble sort, because with each iteration the largest element in the
list “bubbles up” towards the last place, just like a water bubble rises up to the water
surface!

Number of Passes and Comparisons needed:

If you are able to interpret the algorithm correctly you will see that:

1. After the first pass through the list, the largest element will always be moved all the
way to the end. This means a maximum of passes will be necessary to sort any list is
(the length of the list -1).

2. Also, if each pass pushes one more element into its correct position in the list, each

pass will require 1 less comparison.

Result:

1. The maximum number of passes required is equal to:

 [number of elements in the list] - 1 len(listA)-1

2. The number of comparisons necessary during each pass will decrease by 1 after

every pass.

comparisons = comparisons - 1

Exercise #1

Look at the following code carefully. Notice:

1. There is a for loop within another for loop (a “nested” for loop)…what does this
mean?

2. Each pass is represented by x

3. The total number of passes is: (len(nlist)-1)
4. For each pass we do another for loop of several comparisons.
5. During each pass we reduce the number of comparisons by 1

comparisons=comparisons-1

nlist = [14,46,43,5,57,41,45,21,100]

comparisons=(len(nlist)-1)

for x in range(len(nlist)-1):

 for i in range(comparisons):

 if nlist[i]>nlist[i+1]:

 nlist[i],nlist[i+1]=nlist[i+1],nlist[i]

 comparisons=comparisons-1

print(nlist)

Now… it is your turn: Exercise#1

 Put it into an IDE to test it out.
 Carefully review the code above to make sure you fully understand the all

steps and correct method of a bubble sort.
 Create your own bubble sort program from scratch without

looking at the above example

 Use different variable names.
 Obviously, your program should be identical or very similar to the one

above.

Each pass through the array

Each comparison during each pass

The “swap”

The actual comparison

Selection Sort
Algorithm
(grab the smallest put it at the end,
repeat)

A Selection Sort algorithm puts a list of data

in order by doing the following:

1. Finds the smallest element in an

array and then puts it in the first
position of the array.

2. The value that was in the first
position is now placed where the

smallest number came from.

3. The first step is repeated (in the
unsorted data that remains). The
smallest value is always placed next
to the previously designated smallest
number.

Possible Solution:

A = [1,3,5,56,89,34,23,8]

for i in range(len(A)):

 min= i

 for j in range(i+1, len(A)):
 if A[min] > A[j]:
 min = j

 #swap values
 A[i], A[min] = A[min], A[i]
print(A)

Nested For loop
(One For loop inside
another)

Exercise #2

Now… it is your turn:

 Put it into an IDE to test it out.
 Carefully review the code above to make sure you fully understand the all

steps and correct method of a bubble sort.
 Create your own Selection Sort program from scratch without

looking at the above example

 Use different variable names.
 Obviously, your program should be identical or very similar to the one

above.

Insert sort

This Sorting Algorithm works as follows:

1. Assume the first element in the list is sorted.
2. Grab the next element in the list.
3. Compare the next element to all sorted elements and place it to the left of the highest
value in the sorted elements.
4. Repeat steps 2 and 3 until you reach the last element in the list

Python Insert Sort

alist=[8,78,2,9,24,50,101,17]

for i in range(1,len(alist)): # for loop grabs each element

 current = alist[i] # set each element as current element

 while i>0 and alist[i-1]>current: # run each element through
 alist[i] = alist[i-1] # the following while loop:
 i = i-1
 alist[i] = current

print(alist)

Exercise #3

Now… it is your turn:

 Put it into an IDE to test it out.
 Carefully review the code above to make sure you fully understand the all

steps and correct method of a bubble sort.
 Create your own insert sort program from scratch without

looking at the above example

 Use different variable names.
 Obviously, your program should be identical or very similar to the one

above.

Exercise #4

There are dozens of other common sorting algorithms. Use the list on the first page of this
assignment or search up a 4th sorting algorithm and create a python version of it. Save it
and submit it. In the comments section of the code please see if you can explain the
algorithm and how the code is working.

While loop:

If the current element is greater than the
element to it’s left, then shift the current
element to the left again.
When you reach the left end of the list
i=0 or the current element’s value is
greater then the one to it’s left, then
jump out of the while loop and move on
the next unsorted element.

