COMPUTER PROGRAMMING
Level -1

INTRO PACKAGE

2020

Let’s Start Programming:

Please do the following steps in the exact order shown below:

10.

11.

off the mark.com oy merkpaisi

Connect your robot with USB CABLE (before you turn on or login to your laptop)
Turn on your NXT Robot.

Make sure your robot is on.

Now it is OK to turn on your computer and Login.

Open version 4.0 of RobotC (on the desktop) Yellow circular Icon on the desktop of
screen with a 4.0 on it.

If you get a box asking you to update your version select CANCEL.

Check to see if RobotC is running the correct Platform Type. Use the menu
at the top of the screen. Click on: Robot—Platform Type—LEGO Mindstorms NXT.

File — open sample program — NXT Basic Motor Commands — Moving Forward

Click the Download to Robot button then RUN the program see what happens.
(then experiment by changing the 100 and the 4000 values to see what happens)

Hook up your Color Sensor to your Robot in the S1 Port. Get “Findblack” file on
student common drive (in Mr. Walzl folder — Handouts — “Findblack”). Compile,
download, and run the program. Aim the color sensor (place it about 10cm above your
desk) at different areas on your desk...it should indicate to you when it finds a black
area — use the edge of your laptop)....NOTE: you may have to adjust the 20
SensorValue in your code.

Continue reading the package attached to this sheet to get familiar with the
RobotC programming Language. Answer the questions at the end of the
package first and then try to program the two tasks below at the end of the booklet.

NOTE:

Use the RobotC “help” menu to find assistance
with COMMANDS, SYNTAX,...and some good examples.

javascript:edit(127778)

Commands and Syntax in RobotC

Like all programming languages, RobotC has certain words (or commands) that the
programmer can use to tell a computer how to do certain things.

Examples of Commands in Robotc:

Wait

Clear

Motor
Display
Erase
SensorValue

In the coming weeks you will learn how use many different commands in RobotC.

Computers need exact instructions. Your programs must be specific and correct. Even a
tiny mistake, will cause your program to work incorrectly or not work at all.

The rules for how to correctly arrange and use commands is called Syntax.

The following sheets will help you get a better understanding of how to correctly set-up
and write a program in Robotc.

Read the sheets carefully, you will be asked to answer questions and complete tasks
based on the information.

Programming in ROBOTC ROBOTC Rules

[In this lesson, you will learn the basic rules for writing ROBOTC programs.]

ROBOTC is a text-based programming language based on

the standard C programming language.

Commands to the robot are written as text on the screen, processed by the ROBOTC compiler into
a machine language file, and then loaded onto the robot, where they can be run. Text written as

part of a program is called “code”.

s A
1| task main ()
21 {
3
4 motor [motorC] = 100;
5 waitlMsec (3000) ;
6
71 }
_ J

Program Code
Text written as part of a
program is called “code”.

You type code just like normal text, but you must keep in mind that capitalization is important to
the computer. Replacing a lowercase letter with a capital letter or a capital letter with lowercase,

will cause the robot to become confused.

1| Task ke

2

3

4 motor [motorC] = 100;
5 waitlMsec (3000) ;

6

7}

Capitalization

Capitalization (paying attention o UPPERCASE
vs. lowercase) is important in ROBOTC.
Capitalizing the ‘T" in task causes ROBOTC

to no lenger recognize this command.

As you type, ROBOTC will try to help you out by coloring the words it recognizes. If a word appears
in a different color, it means ROBOTC knows it as an important word in the programming language.

l task ','“; 8

1
2

B

4 motor [motorC] = 100;
5 waltlMsec (3000) ;

6

7

}

Code coloring
ROBOTC automatically colors key words
that it recognizes.

Compare this correctly-capitalized “task”
command with the incorrectly-capitalized
version in the previous example. The correct one
is recognized as a command and turns blue.

And now, we will look at some of the important parts of the program code itself.

The most basic kind of statement in ROBOTC simply gives a command to the robot.
The motor [motorcC] ; statement in the sample program you downloaded is a simple
command. It instructs the motor plugged into the Motor C port to turn on at 100% power.

)_I_

1 task main ()

2 {

3

4 (motor[motorC} = O;)
5 (waithsec (3000) ;

6

7}

Simple statement
A straightforward command fo the robot.

This statement fells the robot to turn on
the motor attached to motor port C at
100% power.

Simple statement (2)

This is also a simple statement. It tells
the robot to wait for 3000 milliseconds
(3 seconds).

Statements are run in order, as quickly as the robot is able to reach them. Running this program
on the robot turns the motor on, then waits for 3000 milliseconds (3 seconds) with the motor still

running, and then ends.

task main ()

{

0;
2nd waitIlMsec (3000) ;

1
2
3
4 I1st motor [motorC] =
5
6
7

Sequence

Statements run in English reading order
(left-to-right, fop-to-bottom). As soon as
one command is complete, the next runs.

These two statements cause the motors to
turn on (1st command), and then the robot
immediately begins a three second wait
(2nd command) while the motors remain on.

End

When the program runs out of statements
and reaches the } symbol in task main, all
motors stop, and the program ends.

How did ROBOTC know that these were two separate commands?
Was it because they appeared on two different lines?

No. Spaces and line breaks in ROBOTC are only used to separate words from each other in
multi-word commands. Spaces, tabs, and lines don’t affect the way a program is interpreted

by the machine.

1| task main ()

2 {

3 ()
4 motor [motorC] = O;@
5 waitlMsec (3000) ;

6 ()
7 }

Whitespace
Spaces, tabs, and line breaks are generally
unimportant to ROBOTC and the robot.

They are sometimes needed to separate
words in multi-word commands, but are
otherwise ignored by the machine.

So why ARE they on separate lines? For the programmer. Programming languages are
designed for humans and machines to communicate. Using spaces, tabs, and lines helps
the human programmer to read the code more easily. Making good use of spacing in your

program is a very good habit for your own sake.

1| task main () {motor [motorC
2]1=0;waitlMsec (3000);}

No Whitespace

To ROBOTC, this program is the same as
the last one. To the human programmer,
however, this is close to gibberish.

Whitespace is used to help programs be
readable to humans.

But what about ROBOTC?2 How DID it know where one statement ended and the other began?
It knew because of the semicolon at the end of each line. Every statement ends with a
semicolon. It’s like the period at the end of a sentence.

I8 task main ()
2 { —— Semicolons
3 Like periods in an English sentence,
. semicolons mark the end of every
4 motor [motorC] = f@— ROBOTC statement.
5 waitlMsec (3000)@—
6
7}
Checkpoint

Statements are commands to the robot. Each statement ends in a semicolon so that ROBOTC
can identify it, but each is also usually written on its own line to make it easier for humans to
read. Statements are run in “reading” order, left to right, top to bottom, and each statement is
run as soon as the previous one is complete. When there are no more statements, the program

will end.

ROBOTC uses far more punctuation than English. Punctuation in programming
languages is usually used to separate important areas of code from each other. Most
ROBOTC punctuation comes in pairs.

Punctuation pairs, like the parentheses and square brackets in these two statements, are
used to mark off special areas of code. Every punctuation pair consists of an “opening”
punctuation mark and a “clesing” punctuation mark. The punctuation pair designates the
area between them as having special meaning to the command that they are part of.

1 task main () Punctuation pair: Square brackets []
T i The code written between the square
2 { brackets of the motor command indicate
3 what motor the command should use.
4 motoy [motorC]l| = 100;
& waitl 0);
6
- }
- : Punctuation pair: Parentheses ()
| task main() The code writien between the parentheses
2 { of the wait1Msec command tell it how
3 many milliseconds to wait.
4 motor [motorCl = 100;
5 waithse('i(BOOO) }'
6
o }
Checkpoint

Paired punctuation marks are always used together, and surround specific important parts of a
statement to set them apart.

Different commands make use of different punctuation. The motor command uses square
brackets and the wait1Msec command uses parentheses. This is just the way the commands are
set up, and you will have to remember to use the right punctuation with the right commands.

Simple statements do the work in ROBOTC, but Control Structures do the thinking.
These are pieces of code that control the flow of the program’s commands, rather than issue
direct orders to the robot.

Simple statements can only run one after another in order, but control statements allow the
program to choose the order that statements are run. For instance, they may choose
between two different groups of statements and only run one of them, or sometimes they
might repeat a group of statements over and over.

One important structure is the task main. Every ROBOTC program includes a special section
called task main. This control structure determines what code the robot will run as part of the
main program.

(" : .
1| task main () h Control structure: task main
2| { /—J The control structure “task main” directs the
program fo the main body of the code. When you
3 press “Start” or “Run” on the robot, the program
4 motor [motorC] = 100; immediately goes to task main and runs its code.
5 waitlMsec (3000) ; The left grwd right curly braces { } belong to the
task main structure. They surround the commands
6 which will be run in the program.
71}
—
(" . - .
while (SensorValue (ftouchSensor) == 0) Control structure preview
{ Another control structure, the while
loop, repeats the code between its
motor [motorC] = 100; curly braces { } as long as certain
motor [motorB] = 100; conditions are met.
Normally, statements run onl
} y. y
once, but with a while loop, they
can be told to repeat over and
over for as long as you want!
Checkpoint

Control structures like task main decide which lines of code are run, and when. They control
the “flow” of your program, and are vital to your robot’s ability to make decisions and respond
intelligently to its environment.

Programming languages are meant to be readable by both humans and machines.
Sometimes, the programmer needs to leave o note for human readers to help understand what
the code is doing. For this, ROBOTC allows “comments” to be made.

Comments are text that the computer will ignore. A comment can therefore contain notes,
messages, and symbols that may help a human, but would be meaningless to the computer.
ROBOTC will simply skip over them. Comments appear in green in ROBOTC.

1 [/ / Move motor C forward with 100% powe rj— Comments: // Single line
Any section of text that follows

2 a //double slash on a line,
3| task main () is considered a comment,
4 | although code fo the left of the
// is still considered normal.
5
6 /*)
7 Motor . C f(Z)I‘A’?.I[Z]_ with 100% power Comments: /* Any length */
8 Do this for 3 seconds A comment can be created in ROBOTC
9 * / using another type of paired punctuation,
- / which starts with /* and ends with */
.] This type of comment can span multiple
11 motor [motorC] = 100; lines, so be sure to include both the
12 waitlMsec (3000) ; opening and closing marks!
13
14 }

End of Section

What you have just seen are some of the primary features of the ROBOTC language. Code is
entered as text, which builds statements. Statements are used to issue commands to the robots.
Control structures decide which statements to run at what times. Punctuation, both single like
semicolons and paired like parentheses, are used to set apart important parts of commands.

A number of features in ROBOTC code are designed to help the human, rather than the
computer. Comments let programmers leave notes for themselves and others, and whitespace
like tabs and spaces helps to keep your code organized and readable.

Simple Movement Commands

motor[] command

The motor[] cammand tells the robot to set a motor to run at a given power level. The
example below (taken from the program you ran) sets motor C to run at 100% power
forward. Note that every command in ROBOTC must end with a semicolon, just as every
English statement must end with a period.

Example:

motor [motorC] = 100;

wait1Msec() command

The command “waitTMsec” tells the robot to wait, for the given time in milliseconds.
The number within the parenthesis is the number of milliseconds that you want the robot
to wait. 3000 milliseconds is equal to 3 seconds, so the robot moves for 3 seconds.

Example:

waitlMsec (3000) ;

Moving Forward code Dissection (cont)

3. In order to make the robot go forward, you'll want both motor C and motor B to run
forward. The command motor [motorc]=100; made Motor C move at 100% power.
Add a command that is exactly the same, but addresses Motor B instead.

1 task main ()
2 |
3
4 motor [motorC] = 100;
5 (motor [motorB] = 100 ;)— 3. Add this code

m— e~ [2 - This code is exactly the same as
6 waltlMsec (3000); the line above it, except that it is
7 directed at Motor B (right wheel)
8 |} instead of Motor C (left wheel).

Need Extra Help?

Use the RobotC “help” menu to find assistance with COMMANDS, SYNTAX,...and some
good examples.

OR Google your question RobotC is used by Thousands of Students around the globe. Lots
of good stuff published and discussed on the web about RobotC

Syntax Worksheet

Syntax refers to the rules and proper arrangement of code for a particular
programming language. The syntax of RobotC is very similar to the syntax of the
programming language “C”. C is a very common and useful programming language
used all over the world today.

1. Circle the word below that best describes what Syntax 1is:
a) Syntax is like the “engine” of RobotC
b) Syntax is like a translator
¢) Syntax is like the grammar of a language
d) Syntax is a numbered list of laws

e) Syntax is the same for all programming languages.

2. Does capitalization matter in RobotC? Explain.

3. What line of code must be at the top of each program to indicate where the
main program starts?

4. Draw the type of brackets that must enclose the body of the main program?

5. What do semi-colons do in RobotC?

6. Which of the following command statements correct:

waitlMsec[3000] or waitlMsec (3000)

7. White spaces and line breaks are important in
programming because...

a) they separate the commands for the robot to follow

b) they make the code more readable for the programmer
c) they identify specific classes of commands

d) they identify the sequence the robot needs to follow

8. What does “paired punctuation” mean?

9. Identify the line in which the error exists in the following code:

1 task main ()
2 {
3
4 motor [motorC] = 100;
5 motor [motorB] = 100;
6 waltlMsec[2000];
7
8 }

10. Identify the line in which the error exists in the following code:
1 Task main ()
2 {
3
4 motor [motorC] = 100;
5 motor [motorB] = 100;
6 waitlMsec (2000) ;
7
8 }

11. What will your robot, likely, do when it executes the following commands:
1 task main (
2 {
3
4 motor [motorC] = -100;
5 motor [motorB] = 100;
9 waitlMsec (2000);
y
8 }

A. Go forward for 20 seconds

B. Turn on Motor C for 20 seconds
C. Do a swing turn for 20 seconds
D. Turn on the spot for 2 seconds

12. In the following statement what does the 50 indicate:

motor [motorC] = 50 ;

13. In the following statement what does the 2000 indicate:

waitlMec (2000)

4

14. Explain what is wrong with the following bit of code:

task main ()

{

motor [motorA] =
motor [motorB] =
waitlMsec (4000) ;

motor [motorA]
motor [motorB] =
waitlMsec (4000) ;

100;
100;

= -100;

-100;

//motor A is run at
//motor A is run at
//the program waits

//motor A is run at
//motor A is run at
//the program waits

a 100 power level
a 100 power level
4000 milliseconds

a 100 power level
a 100 power level
4000 millisecond

15. Explain the what text after the // indicates in the code above

16. Lookup and explain what nMotorEncoder

[]1 does.

Use: www.robotC.net then got to support— NXT— then click on Online
Mindstorms Web Help (right side of page)

Write down a clear description of what nMotorEncoder [] does:

Try these:

1.

Write and run a program that gets your robot to move forward two tiles on the floor
and then stop.

Write and run a program that gets your robot to turn in a large circle.
Write and run a program that gets your robot to turn in a small circle.
Write and run a program that gets your robot to move forward (one tile on the floor
— about 30cm), then move in reverse to where it started, then turn 90 degrees. Then

stop.

Write and run a program that gets your robot to move forward (two tiles on the floor)
then turn 180 degrees and move forward back to where it started.

