
Intro to 2-Dimensional Lists in Python

As you may have noticed, the world we live in is

complicated and difficult to represent with single a

straight line. We live in a 3-Dimensional world and most

of the things we model in mathematics and science have

more than a single dimension.

In most programming languages you can create multi-

dimensional data structures to help up represent anything 2D, 3D,

or even more dimensions. These structures are necessary to:

• Model 2-dimentioanal and 3 dimensional space

• Create data tables.

• Perform various mathematical operations (matrices)

• And much much more…

2-Dimensional Lists:

Look at the images to the right. 2D lists are simply

a 2-Dimensional grid of data. Storing data this way

can make accessing data easier and allows us to

model real 2-D data in a more accurate way.

Weather we are working with a table of

information or a 2-D game board. Using a 2D

lists is an easy tool to help us out.

In Python a 2D list is… “a list of lists”:

2dlist = [[1, 2], [3, 4],[5, 6]]

As you can see above we have a list of 3 sub-lists:

• Each sub-list in the list represents a new row

• Each element in the each sub-list represents a new column

1 2
3 4
5 6

Exercise#1

Enter the following into the IDE of your choice. Look carefully at the output and make

sure you understand the address system for 2-dimensional lists in Python.

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 2D list is… “a list of lists”:

print a

print(a[0])
print(a[1])
print(a[2])
print(a[0][0])
print(a[0][2])
print(a[2][0])

a[0][0]=14
a[1][2]=27
print a

Create your own 4x4 2D list of any integers you wish and print the following using the

2D list address system illustrated above:

1. first element in the first column of the 2D list

2. the element in the 3rd row and 3rd column.

3. the element in the 4th row and 2nd column.

Now change the following elements in your 4x4 list and print the entire 2D list at the

end to see if you were able to make the changes correctly:

1. Change the element in the first row of the 1st column to 23

2. Change the element in the 2nd row of the 3rd column to 47

3. Change the element in the 4th row of the 4th column to 100

Save all your work from entire page above and submit as Exercise#1

Displaying 2D lists

It is often useful/necessary to display 2-D lists in a form that is easily readable by

humans. Use the example code below to build a student timetable and then display it

neatly so it can be used by students.

Exercise#2

Enter the code below to create and display a student timetable.

#My weekly timetable

timetable = []

#Monday

timetable.append(["History","Maths","CompSci","PE","Music"])

#Tuesday

timetable.append(["English","Spanish","Maths","Geography","Art"])

#Wednesday

timetable.append(["PE","English","Science","Art","PE"])

#Thursday

timetable.append(["Maths","English","Philosohpy","Spanish","Music"])

#Friday

timetable.append(["Science","Drama","History","Geography","Science"])

for x in timetable:
 print (x)

for row in timetable:
 for val in row:
 print (f'{val:12}',end='')
 print ("")

KNOW this great way to display 2D lists!

Exercise#2...continued.

Now add to the program on the previous page so it can do the following:

1. Asks the user to input a day of the week (e.g. Tuesday)

2. Asks the user to input a period during the school day (between 1 and 5)

3. Retrieve and output the class on the day and period the user selected (e.g. Spanish)

Adding/Removing entire Rows or Columns to your 2D lists:

One thing you might want to do with a 2-Dimensional set of data is add an entire column or row.

For example let’s say you wanted to create a weekly meal plan like the one shown above

As you can see, it’s not complete. Maybe you would like to add “dinners” to the meal plan or

add the rest of the days of the week. This is relatively easy to do in Python.

Exercise#3

Adding Rows:

Enter the following code into an IDE to see how to add a row. Then add a least one more

additional row to the 4 rows that have been created.

list=[['coffee','salmon','steak'],
['cereal','sandwich','soup'],
['eggs','sandwich','pasta']]

for x in list:
 print (x)
print('\n')

list.append(['waffles','soup','hambuger'])

 for x in list:
 print (x)
print('\n')

Adding rows is simple. Just
append an extra list to the
list.

Exercise#3 continued:

What if we want to insert a row somewhere else besides the bottom row?

We can use the insert() function.

Add the following to the code on the previous page and run the program to see what it

does. Try changing the 1 to a 2, and run the code again. What do the numbers mean?

Now, insert another row (at the very top the chart)

print('\n')

list.insert(1,['toast','chili','chicken'])

for x in list:
 print (x)

print('\n')

Exercise#4

Adding Columns.

Adding, again, to the code from the previous exercise, try to add an additional column

to your meal plan called midnight_snacks:

print('\n')

midnight_snack=['ice cream','cereal','ham sandwich','donut','Glass_o_Milk']

y=0
for x in range(len(list)):
 list[x].append(midnight_snack[y])
 y=y+1
 if y>(len(midnight_snack)):
 break

print('\n')

for x in list:
 print (x)

Building 2D list with For Loops

Let’s say you want to create a 2D game

that involved a 7X7game board. Initially

you wish each space on the board to be

EMPTY. This means you will have to create

a 7X7 2D list of “Empty” Values.

Instead of typing out the entire 2-D list you

could do the following:

Enter the following code into your IDE, run it and make sure you understand how they

both work.

r = 7
c = 7
a = ["Empty"] * r
for i in range(r):
 a[i] = ["Empty"] * c

for row in a:
 for val in row:
 print (f'{val:9}',end='')
 print ("")

#alternatively you could do:
rows=7
cols=7
two_d_list=[]
for i in range(rows):
 row = []
 for j in range(cols):
 row.append(0)
 two_d_list.append(row)

for x in two_d_list:
 print (x)

Solution to creating a 10 x 10 grid where each positions alternates between 0 and 1.

rows = 10
cols = 10

two_d_list=[]
for i in range(rows):
 row = []
 for j in range(cols):
 if j%2==0:
 row.append(0)
 else:
 row.append(1)
 two_d_list.append(row)

for x in two_d_list:
 print x

Exercise#5…continued.

Create a 16 x 16 grid where the first element is the word “good” and the second

elements is the word “bad”….alternate these elements in the array.

When you want to represent 2D data that is regular or repeating you can usually use a for loop like the ones

shown on the previous page.

Exercise#5

Use the code on the previous page to:

• Create a 11x11 grid where all elements are the word “matrix”. Then:

• Create a 15 x 15 grid where all elements are the integer 0.

• Create a 9 x 9 grid of the word “grass”

• Create a 10 x 10 grid where each positions alternates between 0 and 1. (solution below if you are having

difficulty)

Exercise#6

Create a 20 x 20 grid where the first row is all 1’s, the second row is all 2’s, the third row

is all 3’s….continue this pattern for all 20 rows.

Exercise#7

Create a 6 x 4 grid where the first element is 1 and the

second is 2 and each element increase until they reach 24.

User Created Input for a 2D array.

Enter the following the examples into an IDE of your choice and make sure

you know how they work. Save and submit the examples as Exercise#10.

Then work on the exercises after the examples (exercises closely related to

the examples).

Exercise#8

Examples:

Example#1 User Inputs each line of input as a row. User enters entire row on a single line with
each element separated by a space. They hit enter to go on to the next row.

n = int(input())
a = []
for i in range(n):
 row = input().split()
 for i in range(len(row)):
 row[i] = int(row[i])
 a.append(row)

for x in a:
 print x

1 2 3 4 5 6

8 7 9

Example#2 User inputs every element on a separate line. User enters each element then pressed enter.

grid = []
taking 3x3 matrix from the user
for i in range(3):
 row = []
 for j in range(3):
 element = int(input())
 row.append(element)
 grid.append(row)

for x in grid:
 print x

Exercise#9

Create a program that will allow the user to input a list of grades for a group of students. The

first column of each row will be the student’s name the next 5 elements in each row will be the

student’s grades separated by a space. Print out the user’s input in a neat format.

Exercise#10

An Oceanographer is trying to map out where

boats most commonly dock in the Burrard Inlet in

Vancouver. Get the user to input a 5 x 5 grid that is

series of either of the following two Characters “B”-

(for boat) and “N”-(for NO boat). Make sure you

allow the user to entering an entire row on one line.
Display the grid when they have entered all the data.

Exercise#11

Create a x and o’s board that allows the user to place an x or o in a spot of

their choice. Input will alternate between x’s and o’s. Each user should select

a coordinate in the 3 x 3 list (as shown below). The blank board can be a 3 x

3 list of “-” or “!” symbols. Explain to the user the coordinate system.

Example:
where do you want to put an x? Note that top left is 1,1: 2 2
where do you want to put an o? Note that top left is 1,1: 2 3

